Математика как формализованная имитация этапа структурирования мира в отражении субъекта

 

Таким образом, проясняется отношение математики к реальности. По этому вопросу существуют разные мнения. Одни считают математику чистым порождением ума, не связанным происхождением и сущностью с реальным внешним миром. Другие полагают, что она отражает реальные связи, существующие в нем. Дискуссии, ведущиеся на таком уровне, бесплодны. И те, и другие и правы, и неправы. Само возникновение таких полярных позиций свидетельствует о вкладе в порождение математики как объективной реальности, так и субъективного фактора, что и отражается в появлении этих позиций при абсолютизации того или иного вклада. Правда, обычно сторонники одного из этих взглядов чувствуют также весомость противополож­ного, но дальше этого дело не идет.

Кажущаяся безотносительность математики к любой реальности - "математика сама по себе" - связана с тем, что комбинирование различных исходных положений и действий с ними в математической работе действительно весьма произвольно и формально попросту постулируется - вопрос о том, существуют ли подобные положения и связи в реальном мире, выходит за рамки математики и в ней не рассматривается. В принципе она может не выбирать в качестве материала что-либо из наблюдаемого, а работать с чем-то выдуманным, мифическим - от этого она не перестанет быть математикой. Но хотя в этом плане математика и не имеет обязательного прямого отношения ко "внешней" реальности, сами принципы, по которым она работает, порождены реально существующими принципами деятельности, реальностью отношений субъекта с предметом его работы, и в этом смысле математика отражает объективное. Она отражает не принципы "чистого мышления", будь таковое возможно, а принципы выработки реакции субъекта на обстоятельства материального бытия.

С другой стороны, в результате метафизической абсолютизации первого из указанных в начале статьи факторов, порождающих объект, широко распространен объективистский взгляд на объекты, а именно - отождествление объекта, выделяемого деятельностью на данном материале, с самим этим материалом. Это, по крайней мере неявное, представление о зеркальности отражения отбрасывает моменты, связанные с деятельностью и ее субъективным аспектом, и тем самым все связи, возникающие между объектами и классифицируемые математикой, приписывает только объективному, реально существующему во внешнем по отношению к субъекту мире. Бытовавшие прежде ссылки на реальность в доводах за или против неэвклидовой геометрии основывались на неверном понимании предмета математики, на непонимании исходной модельной произвольности анализируемых материала и процессов, на совершенной необязательности отражения в математических построениях реальных, действительных свойств внешнего мира.

Против изложенной здесь критики "реалистического" представления о математике может возникнуть возражение типа следующего. Как же математика не отражает непосредственно внешнего мира, не вытекает из его свойств и не "обогащается" им, а только изучает следствия применения специфических принципов деятельности к модельному материалу, если, например, она успешно применяется к описанию движения тел или, скажем, колебательных процессов? Где у колебаний струны, вызываемых ее упругостью, деятельность субъекта?

Но, во-первых, в данном выше схематичном определении сути предмета математики не отвергается возможность работы в ней с материалом, характер которого подсказан наблюдениями. Во-вторых, непосредственный итог наблюдения не есть зеркальное отражение реальностей внешнего мира, а есть только некоторым образом вырезанный и приглаженный аспект этих реальностей, без вырезания и приглаживания сам по себе, самостоятельно четко выделенный, не существующий. Никакой строгой периодичности колебаний, какую мы видим у математической струны, в природе нет. Просто так из внешнего мира математика (как и формальная логика) ничего не берет. Что же касается способности математики предсказывать разумные результаты, например, при интерполяции, то причина этой успешности, как сказано выше, зарыта там же, где и воспроизводимость забивания гвоздя - ведь ударяем мы каждый раз, строго говоря, по-разному и при разных обстоятельствах.

И физика пользуется математикой - более или менее широкой и согласованной системой типичных для деятельно­сти структур, операций и выводов - именно постольку, поскольку сама получает свои данные в деятельности и должна (только так и может) их выразить в ее (деятельности) терминах. Соответственно, и оправдание объективистского понимания физических законов ссылками на возможность или необходимость их выражения на языке вневременной и абсолютной математики несостоятельно и ложно.

Ввиду того, что математика изучает результаты произвольной деятельности, ограничиваясь лишь использо­ванием характерных для деятельности принципов отделения одного от другого, непротиворечивости, той или иной определенности результата, не возникает собственно математических предпочтений ни развитию аппарата на базе теории множеств, ни "конструктивистским" построениям, и т.д. Выбор таких схем должен производиться извне математики в основном, видимо, по удобству, мощности и эффективности схемы в соответствующей сфере приложений - желательно с предварительным анализом адекватности схемы реальному состоянию дел.



 
2007-2017. © В.Б. Губин - собрание книг автора.
Для связи с администрацией используйте форму обратной связи