Прав ли Пригожин?

 

Для термодинамики характерно, что состояние рабочего тела (газа) в тепловой машине полностью и однозначно определяется макроскопическими параметрами, не использующими координат и скоростей отдельных частиц, составляющих рабочее тело. Например, изменение объема приводит к однозначному изменению давления. Уже здесь есть парадокс. С точки зрения механики такой результат совершенно необязателен: в общем случае ответ должен зависеть от конкретных положений и скоростей частиц газа и от характера движения стенок, заключающих газ, так как частицы не размазаны по всему объему и не обязаны одинаково и однообразно реагировать на воздействия стенок. В термодинамике же рабочее тело походит на заполняющую объем невесомую, безынерционную резину с определенными упругими свойствами. Оказалось, что и с частицами такой же результат возникает при медленных по сравнению со скоростями частиц движениях стенок, когда все частицы успевают «прочувствовать» их движение. Полная и точная определенность результатов в энергетическом отношении (и не обязательно при большом числе частиц) наступает в так называемом адиабатическом пределе - при стремлении к нулю отношения скорости стенок к скоростям частиц. Тогда давление и энергия газа начинают вполне однозначно изменяться с изменением объема независимо от распределения частиц по координатам и скоростям. Этот факт вызывает необходимость в холодильнике, так как после расширения объема - рабочего хода - обратное сжатие без сброса давления (с помощью сброса энергии в холодильник) происходило бы точно обратно и потребовало бы затраты всей энергии, полученной при расширении.

Таким образом, во-первых, термодинамические эффекты при движении частиц по механике возникают, но не всегда, а при определенном способе действий с системой. То есть механика не исключает термодинамики, но сама по себе не порождает ее. Во-вторых, при однозначности результата в макроскопических переменных (здесь это объем, давление, внутренняя энергия) он не однозначен в микроскопическом отношении: частицы могут как в начале, так и в конце процесса оказываться в разных положениях и с разными скоростями, но на термодинамических параметрах (и энерге­тических эффектах) это не отражается, в макроскопических наблюдаемых процесс зависит только от суммарной энергии частиц.

Дополнительно отметим один существенный, но не отмеченный методологами факт. Как сказано выше, зависимость термодинамического результата процесса от начального микросостояния (от положений и скоростей частиц) исчезает в пределе бесконечно медленных изменений объема. Классическую термодинамику иногда даже называют термостатикой, и поделом. Формулы, которые дают в учебниках термодинамики для описания этих процессов (например, уравнение адиабаты Пуассона), применимы, строго говоря, только в этом пределе, то есть при конечных скоростях частиц - только при нулевых скоростях стенок, что, если это буквально принимать, выглядит достаточно нелепо, так как формально этот предел делает невозможным сам описываемый процесс. Но дело в том, что для человека-пользователя абсолютная точность не является необходимой. Он удовлетворяется уже конечной точностью результатов. Некоторый небольшой разброс энергий в результатах про­цесса, возможный в околопредельной области, оказывается приемлемым, что и обеспечивает предельным формулам практическую работоспособность. Именно эта важнейшая особенность требований позволяет плодотворно пользовать­ся предельными формулами, и именно это нетребование бесконечно точного описания реальности, бесконечно точно­го моделирования реальности вообще дает возможность существовать научным теориям, никогда точно не описывающим мир. Факт существования и, следовательно, работоспособности конечных (а только такие и возможны) замкнутых теорий неизбежно сопутствует тому, что в результатах отражаемых ими процессов выделяются и используются не все подробности, а лишь некоторые. Так, при работе тепловой машины интерес представляет лишь суммарная кинетическая энергия частиц газа.

Итак, состояние газа в тепловой машине контролиру­ется макропараметрами - объемом и давлением, комбинация которых указывает внутреннюю энергию. Эти наблюдаемые и задают, так сказать, термодинамическую реальность, которую они точно указывают и контролируют и вне которой как бы ничего больше нет. В сфере этой реальности никакие микросостояния, частицы не являются наблюдаемыми, никак не проявляются. Но, конечно, воздействия макропараметра­ми на систему как-то воздействуют и на частицы. Возникает вопрос: насколько точно реальная система частиц контролируется этими параметрами? И тут вскрывается чрезвычайно любопытный и важный факт.

Пусть объем известен. Измеряем давление: в течение некоторого интервала времени набираем удары частиц, создающие давление. По величине объема и обнаруженному давлению с помощью известного соотношения (так называемого основного уравнения термодинамики) вычисля­ем энергию системы. Повторим измерение давления за такой же интервал, но смещенный во времени. Если это смещение не подбирать специально в соответствии с положением микросистемы, а это не соответствовало бы очевидному отсутствию согласования движений поршня в тепловой машине с состояниями частиц, то число ударов может оказаться другим, и измеренное давление может получиться несколько иным. Соответственно и вычисленная энергия будет другой. Оказывается, что произведение этого разброса (неопределенности, неточности) в энергии (которая в действительности фиксирована) на длину интервала времени измерения - величина постоянная для разных длин интервалов. Обратим внимание на то, что это произведение имеет размерность действия, как и постоянная Планка. Таким образом, контроль над микросистемой со стороны макропараметров характеризуется ненулевой неточностью, имеющей размерность действия. Как хорошо известно, неточность в действии, свойственная классической механике, которую мы здесь взяли в качестве модельной механики частиц, равна нулю. Этим и отличается контроль над частицами в термодинамике и в классической механике. Сама по себе механика в принципе позволяет точное согласование времени измерения с состоянием микросистемы и, соответственно, точное согласование воздействий на микросистему с соответствующим улучшением качества результатов: точное применение механики позволило бы работать без холодильника. Необходимость холодильника не есть порождение механики, но и не противоречит ей. В тепловой машине таких точных согласований движений поршня с состоянием частиц газа не производится, поршень движется, так сказать, наобум, поэтому и не удивительно, что ей требуется холодильник.



 
2007-2017. © В.Б. Губин - собрание книг автора.
Для связи с администрацией используйте форму обратной связи